Skip to main content
Log in

Comparison between Explosive Welding and Roll-Bonding Processes of AA1050/Mg AZ31B Bilayer Composite Sheets Considering Microstructure and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this article, the effect of the manufacturing process on the microstructure and mechanical properties of AA1050/Mg-AZ31B bilayer composite sheets has been studied experimentally. In multilayer composite sheets, the interface bond strength plays a significant role in the mechanical properties of the composite. The most important factor affecting the bond strength is the manufacturing process of these sheets. So, two processes of explosive welding and roll bonding have been used to manufacture the bilayer composite sheets. The results show that the atomic diffusion in the interface is 6.5 microns in the explosive welding and 6.7 microns in the roll bonding. No intermetallic compounds have been observed in the interface of the studied bonding methods. The wavy and straight interface morphologies have been observed for explosive welding and roll bonding, respectively. Also, recrystallization has been observed in the microstructure of both methods. In the magnesium microstructure of rolled sample, twinning and deformation bands have been seen, while adiabatic shear bands have been formed in the explosive-welded sample. The ultimate tensile strength, elongation, and work of fracture (WOF) of explosive-welded sheets have been increased by 145%, 31%, and 407% relative to the rolled sheets, respectively. Besides, considering the separation of layers in the tensile test of rolled sheets compared to explosive welded ones, it can be stated that the structural failure in explosive welding occurs simultaneously for all layers. However, for roll bonding, the layer failure is independent of the entire structure failure. In this case, first, necking and fracture of the magnesium layer occur, and then, after the separation of the interface, the fracture of the aluminum layer happens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Chowdhury, D.L. Chen, S.D. Bhole, E. Powidajko, D.C. Weckman, and Y. Zhou, Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42, p 1974–1989. https://doi.org/10.1007/s11661-010-0574-y

    Article  CAS  Google Scholar 

  2. J. Hirsch and T. Al-Samman, Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications, Acta Mater., 2013, 61, p 818–843. https://doi.org/10.1016/j.actamat.2012.10.044

    Article  CAS  Google Scholar 

  3. T.M. Pollock, Weight loss with magnesium alloys, Science (80-), 2010, 328, p 986–987. https://doi.org/10.1126/science.1182848

    Article  CAS  Google Scholar 

  4. G.L. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N

    Article  Google Scholar 

  5. M.C. Zhao, M. Liu, G. Song, and A. Atrens, Influence of the β-Phase Morphology on the Corrosion of the Mg Alloy AZ91, Corros. Sci., 2008, 50, p 1939–1953. https://doi.org/10.1016/j.corsci.2008.04.010

    Article  CAS  Google Scholar 

  6. X.P. Zhang, T.H. Yang, J.Q. Liu, X.F. Luo, and J.T. Wang, Mechanical Properties of an Al/Mg/Al Trilaminated Composite Fabricated by Hot Rolling, J. Mater. Sci., 2010, 45, p 3457–3464. https://doi.org/10.1007/s10853-010-4373-z

    Article  CAS  Google Scholar 

  7. J. Nie, M. Liu, F. Wang, Y. Zhao, Y. Li, Y. Cao, and Y. Zhu, Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties, Materials (Basel, Switzerland), 2016, 9, p 951. https://doi.org/10.3390/ma9110951

    Article  CAS  Google Scholar 

  8. L.M. Gurevich, V.N. Arisova, Y.P. Trykov, I.A. Ponomareva, and A.F. Trudov, Special Features of Structure Formation in an Explosion-Welded Magnesium-Aluminum Composite Under Deformation and Subsequent Heat Treatment, Met. Sci. Heat Treat., 2016, 58, p 214–218. https://doi.org/10.1007/s11041-016-9991-x

    Article  CAS  Google Scholar 

  9. W. Deqing, S. Ziyuan, and Q. Ruobin, Cladding of Stainless Steel on Aluminum and Carbon Steel by Interlayer Diffusion Bonding, Scr. Mater., 2007, 56, p 369–372. https://doi.org/10.1016/j.scriptamat.2006.11.003

    Article  CAS  Google Scholar 

  10. M.A. Anjos, R. Vilar, and Y.Y. Qiu, Laser Cladding of ASTM S31254 Stainless Steel on a Plain Carbon Steel Substrate, Surf. Coat. Technol., 1997, 92, p 142–149. https://doi.org/10.1016/S0257-8972(96)03182-9

    Article  CAS  Google Scholar 

  11. M. Benák, M. Turňa, P. Palček, and P. Nesvadba, Study of Explosion Welding of Mg Alloy with Aluminium, Defect and Diffusion Forum, Trans Tech Publications Ltd, 2010, p 1177–1182. https://doi.org/10.4028/www.scientific.net/DDF.297-301.1177

  12. T. Zhang, W. Wang, W. Zhang, Y. Wei, X. Cao, Z. Yan, and J. Zhou, Microstructure Evolution and Mechanical Properties of an AA6061/AZ31B Alloy Plate Fabricated by Explosive Welding, J. Alloys Compd., 2018, https://doi.org/10.1016/j.jallcom.2017.11.285

    Article  Google Scholar 

  13. I.A. Bataev, S. Tanaka, Q. Zhou, D.V. Lazurenko, A.M.J. Junior, A.A. Bataev, K. Hokamoto, A. Mori, and P. Chen, Towards Better Understanding of Explosive Welding by Combination of Numerical Simulation and Experimental Study, Mater. Des., 2019, https://doi.org/10.1016/j.matdes.2019.107649

    Article  Google Scholar 

  14. H. Nie, W. Liang, H. Chen, L. Zheng, C. Chi, and X. Li, Effect of Annealing on the Microstructures and Mechanical Properties of Al/Mg/Al Laminates, Mater. Sci. Eng., A, 2018, 732, p 6–13. https://doi.org/10.1016/j.msea.2018.06.065

    Article  CAS  Google Scholar 

  15. L.J. Zhang, Q. Pei, J.X. Zhang, Z.Y. Bi, and P.C. Li, Study on the Microstructure and Mechanical Properties of Explosive Welded 2205/X65 Bimetallic Sheet, Mater. Des., 2014, 64, p 462–476. https://doi.org/10.1016/j.matdes.2014.08.013

    Article  CAS  Google Scholar 

  16. M. Paramsothy, N. Srikanth, and M. Gupta, Solidification Processed Mg/Al Bimetal Macrocomposite: Microstructure and Mechanical Properties, J. Alloys Compd., 2008, 461, p 200–208. https://doi.org/10.1016/j.jallcom.2007.07.050

    Article  CAS  Google Scholar 

  17. Y.S. Sato, S.H.C. Park, M. Michiuchi, and H. Kokawa, Constitutional Liquation during Dissimilar Friction Stir Welding of Al and Mg Alloys, Scr. Mater., 2004, 50, p 1233–1236. https://doi.org/10.1016/j.scriptamat.2004.02.002

    Article  CAS  Google Scholar 

  18. B. Vamsi Krishna, P. Venugopal, and K. Prasad Rao, Solid State Joining of Dissimilar Sintered P/M Preform Tubes by Simultaneous Cold Extrusion, Mater. Sci. Eng., A, 2004, 386, p 301–317. https://doi.org/10.1016/j.msea.2004.07.048

    Article  CAS  Google Scholar 

  19. D. Zhang, M. Suzuki, and K. Maruyama, Microstructural Evolution of a Heat-Resistant Magnesium Alloy Due to Friction Stir Welding, Scr. Mater., 2005, 52, p 899–903. https://doi.org/10.1016/j.scriptamat.2005.01.003

    Article  CAS  Google Scholar 

  20. M.H. Bina, F. Dehghani, and M. Salimi, Effect of Heat Treatment on Bonding Interface in Explosive Welded Copper/Stainless Steel, Mater. Des., 2013, 45, p 504–509. https://doi.org/10.1016/j.matdes.2012.09.037

    Article  CAS  Google Scholar 

  21. Z. Chen, D. Wang, X. Cao, W. Yang, and W. Wang, Influence of Multi-pass Rolling and Subsequent Annealing on the Interface Microstructure and Mechanical Properties of the Explosive Welding Mg/Al Composite Plates, Mater. Sci. Eng., A, 2018, 723, p 97–108. https://doi.org/10.1016/j.msea.2018.03.042

    Article  CAS  Google Scholar 

  22. N. Zhang, W. Wang, X. Cao, and J. Wu, The Effect of Annealing on the Interface Microstructure and Mechanical Characteristics of AZ31B/AA6061 Composite Plates Fabricated by Explosive Welding, Mater. Des., 2015, 65, p 1100–1109. https://doi.org/10.1016/j.matdes.2014.08.025

    Article  CAS  Google Scholar 

  23. Y. Du, G. Fan, T. Yu, N. Hansen, L. Geng, and X. Huang, Laminated Ti-Al Composites: Processing, Structure and Strength, Mater. Sci. Eng., A, 2016, 673, p 572–580. https://doi.org/10.1016/j.msea.2016.07.108

    Article  CAS  Google Scholar 

  24. Y. Wu, Y.C. Xin, X.S. Xia, B. Feng, Y.Bin Wang, and Z.De Zhao, Influence of Annealing Treatments on Microstructure and Mechanical Properties of an Extruded Mg AZ31/Al 7050 Laminate, Acta Metall. Sin. (Engl. Lett.), 2019, https://doi.org/10.1007/s40195-018-0802-9

    Article  Google Scholar 

  25. C. Zhu, L. Sun, W. Gao, G. Li, and J. Cui, The Effect of Temperature on Microstructure and Mechanical Properties of Al/Mg Lap Joints Manufactured by Magnetic Pulse Welding, J. Mater. Res. Technol., 2019, https://doi.org/10.1016/j.jmrt.2019.05.017

    Article  Google Scholar 

  26. H.Y. Wu, S. Lee, and J.Y. Wang, Solid-State Bonding of Iron-Based Alloys, Steel-Brass, and Aluminum Alloys, J. Mater. Process. Technol., 1998, 75, p 173–179. https://doi.org/10.1016/S0924-0136(97)00323-3

    Article  Google Scholar 

  27. K.S. Lee, D.H. Yoon, H.K. Kim, Y.N. Kwon, and Y.S. Lee, Effect of Annealing on the Interface Microstructure and Mechanical Properties of a STS-Al-Mg 3-ply Clad Sheet, Mater. Sci. Eng., A, 2012, 556, p 319–330. https://doi.org/10.1016/j.msea.2012.06.094

    Article  CAS  Google Scholar 

  28. N. Yamamoto, J. Liao, S. Watanabe, and K. Nakata, Effect of Intermetallic Compound Layer on Tensile Strength of Dissimilar Friction-Stir Weld of a High Strength Mg Alloy and Al Alloy, Mater. Trans., 2009, 50, p 2833–2838. https://doi.org/10.2320/matertrans.M2009289

    Article  CAS  Google Scholar 

  29. J.J. Zhang, W. Liang, and H.T. Li, Effect of Thickness of Interfacial Intermetallic Compound Layers on the Interfacial Bond Strength and the Uniaxial Tensile Behaviour of 5052 Al/AZ31B Mg/5052 Al Clad Sheets, RSC Adv., 2015, 5, p 104954–104959. https://doi.org/10.1039/c5ra15357c

    Article  CAS  Google Scholar 

  30. X.P. Zhang, M.J. Tan, T.H. Yang, X.J. Xu, and J.T. Wang, Bonding Strength of Al/Mg/Al Alloy Tri-metallic Laminates Fabricated by Hot Rolling, Bull. Mater. Sci., 2011, 34, p 805–810. https://doi.org/10.1007/s12034-011-0198-x

    Article  CAS  Google Scholar 

  31. A. Macwan, X.Q. Jiang, C. Li, and D.L. Chen, Effect of Annealing on Interface Microstructures and Tensile Properties of Rolled Al/Mg/Al Tri-layer Clad Sheets, Mater. Sci. Eng., A, 2013, 587, p 344–351. https://doi.org/10.1016/j.msea.2013.09.002

    Article  CAS  Google Scholar 

  32. F. Findik, Recent Developments in Explosive Welding, Mater. Des., 2011, https://doi.org/10.1016/j.matdes.2010.10.017

    Article  Google Scholar 

  33. O.A. Gali, M. Shafiei, J.A. Hunter, and A.R. Riahi, The Influence of Hot Rolling on Oxide Development within Micro-cracks of Aluminum-Magnesium Alloys, Mater. Sci. Eng., A, 2014, 618, p 129–141. https://doi.org/10.1016/j.msea.2014.08.029

    Article  CAS  Google Scholar 

  34. H. Nie, X. Hao, H. Chen, X. Kang, T. Wang, Y. Mi, and W. Liang, Effect of Twins and Dynamic Recrystallization on the Microstructures and Mechanical Properties of Ti/Al/Mg Laminates, Mater. Des., 2019, https://doi.org/10.1016/j.matdes.2019.107948

    Article  Google Scholar 

  35. J.S. Kim, K.S. Lee, Y.N. Kwon, B.J. Lee, Y.W. Chang, and S. Lee, Improvement of Interfacial Bonding Strength in Roll-Bonded Mg/Al Clad Sheets through Annealing and Secondary Rolling Process, Mater. Sci. Eng., A, 2015, 628, p 1–10. https://doi.org/10.1016/j.msea.2015.01.035

    Article  CAS  Google Scholar 

  36. Z.J. Wang, L. Zhai, M. Ma, H. Yuan, and W.C. Liu, Microstructure, Texture and Mechanical Properties of Al/Al Laminated Composites Fabricated by Hot Rolling, Mater. Sci. Eng., A, 2015, 644, p 194–203. https://doi.org/10.1016/j.msea.2015.07.035

    Article  CAS  Google Scholar 

  37. M. Abbasi and S.A. Sajjadi, Mechanical Properties and Interface Evaluation of Al/AZ31 Multilayer Composites Produced by ARB at Different Rolling Temperatures, J. Mater. Eng. Perform., 2018, https://doi.org/10.1007/s11665-018-3423-6

    Article  Google Scholar 

  38. S.A.A. Akbari Mousavi and P. Farhadi Sartangi, Experimental Investigation of Explosive Welding of cp-Titanium/AISI, 304 Stainless Steel, Mater. Des., 2009, 30, p 459–468. https://doi.org/10.1016/j.matdes.2008.06.016

    Article  CAS  Google Scholar 

  39. Y. Kaya and N. Kahraman, An Investigation into the Explosive Welding/Cladding of Grade A Ship Steel/AISI, 316L Austenitic Stainless Steel, Mater. Des., 2013, 52, p 367–372. https://doi.org/10.1016/j.matdes.2013.05.033

    Article  CAS  Google Scholar 

  40. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai, Role of Shear Strain in Ultragrain Refinement by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 2002, 46, p 281–285. https://doi.org/10.1016/S1359-6462(01)01239-8

    Article  CAS  Google Scholar 

  41. M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry, Development of a Recovered/Recrystallized Multilayered Microstructure in Al Alloys by Accumulative Roll Bonding, Acta Mater., 2007, 55, p 5438–5448. https://doi.org/10.1016/j.actamat.2007.06.021

    Article  CAS  Google Scholar 

  42. B. Wronka, Testing of Explosive Welding and Welded Joints: Joint Mechanism and Properties of Explosive Welded Joints, J. Mater. Sci., 2010, 45, p 4078–4083. https://doi.org/10.1007/s10853-010-4494-4

    Article  CAS  Google Scholar 

  43. Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Microstructure and Properties of Magnesium AZ31B-Aluminum 7075 Explosively Welded Composite Plate, Mater. Sci. Eng., A, 2010, 527, p 2241–2245. https://doi.org/10.1016/j.msea.2009.12.007

    Article  CAS  Google Scholar 

  44. Y. Yang, B.F. Wang, B. Hu, K. Hu, and Z.G. Li, The Collective Behavior and Spacing of Adiabatic Shear Bands in the Explosive Cladding Plate Interface, Mater. Sci. Eng., A, 2005, 398, p 291–296. https://doi.org/10.1016/j.msea.2005.03.099

    Article  CAS  Google Scholar 

  45. C.Y. Liu, Q. Wang, Y.Z. Jia, R. Jing, B. Zhang, M.Z. Ma, and R.P. Liu, Microstructures and Mechanical Properties of Mg/Mg and Mg/Al/Mg Laminated Composites Prepared via Warm Roll Bonding, Mater. Sci. Eng., A, 2012, 556, p 1–8. https://doi.org/10.1016/j.msea.2012.06.046

    Article  CAS  Google Scholar 

  46. H. Nie, W. Liang, H. Chen, F. Wang, L. Taotao, C. Chi, and X. Li, A Coupled EBSD/TEM Study on the Interfacial Structure of Al/Mg/Al Laminates, J. Alloys Compd., 2018, https://doi.org/10.1016/j.jallcom.2018.11.366

    Article  Google Scholar 

  47. R.E. Reed-Hill, Physical Metallurgy Principles, Van Nostrand, New York, 1964, [1972, c1973], p 267 and 725.

  48. Y. Li and Z. Wu, Microstructural Characteristics and Mechanical Properties of 2205/AZ31B Laminates Fabricated by Explosive Welding, Metals (Basel), 2017, https://doi.org/10.3390/met7040125

    Article  Google Scholar 

  49. I.K. Kim and S.I.G. Hong, Roll-Bonded Tri-layered Mg/Al/Stainless Steel Clad Composites and Their Deformation and Fracture Behavior, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44, p 3890–3900. https://doi.org/10.1007/s11661-013-1697-8

    Article  CAS  Google Scholar 

  50. J. Tang, L. Chen, G. Zhao, C. Zhang, and J. Yu, Study on Al/Mg/Al Sheet Fabricated by Combination of Porthole Die Co-extrusion and Subsequent Hot Rolling, J. Alloys Compd., 2019, https://doi.org/10.1016/j.jallcom.2019.01.005

    Article  Google Scholar 

  51. M. Honarpisheh, M. Asemabadi, and M. Sedighi, Investigation of Annealing Treatment on the Interfacial Properties of Explosive-Welded Al/Cu/Al Multilayer, Mater. Des., 2012, 37, p 122–127. https://doi.org/10.1016/j.matdes.2011.12.045

    Article  CAS  Google Scholar 

  52. A.G. Mamalis, N.M. Vaxevanidis, A. Szalay, and J. Prohaszka, Fabrication of Aluminium/Copper Bimetallics by Explosive Cladding and Rolling, J. Mater. Process. Technol., 1994, 44, p 99–117. https://doi.org/10.1016/0924-0136(94)90042-6

    Article  Google Scholar 

  53. D. Wang, X. Cao, L. Wang, M. Cao, and W. Wang, Influence of Hot Rolling on the Interface Microstructure and Mechanical Properties of Explosive Welded Mg/Al Composite Plates, J. Mater. Res., 2017, 32, p 863–873. https://doi.org/10.1557/jmr.2017.27

    Article  CAS  Google Scholar 

  54. K.S. Lee, Y.S. Lee, and Y.N. Kwon, Influence of Secondary Warm Rolling on the Interface Microstructure and Mechanical Properties of a Roll-Bonded Three-Ply Al/Mg/Al Sheet, Mater. Sci. Eng., A, 2014, 606, p 205–213. https://doi.org/10.1016/j.msea.2014.03.082

    Article  CAS  Google Scholar 

  55. M. Sedighi, P. Farhadipour, and M. Heydari Vini, Mechanical Properties and Microstructural Evolution of Bimetal 1050/Al2O3/5083 Composites Fabricated by Warm Accumulative Roll Bonding, JOM, 2016, 68, p 3193–3200. https://doi.org/10.1007/s11837-016-2123-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Iran National Science Foundation (INSF) for supporting this research under Grant Number 97011518.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sedighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouzbeh, A., Sedighi, M. & Hashemi, R. Comparison between Explosive Welding and Roll-Bonding Processes of AA1050/Mg AZ31B Bilayer Composite Sheets Considering Microstructure and Mechanical Properties. J. of Materi Eng and Perform 29, 6322–6332 (2020). https://doi.org/10.1007/s11665-020-05126-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05126-9

Keywords

Navigation